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INTRODUCTION
In this work, we regard the governing equation-
s of RTI as a parameterized time-dependent PDE
with parameterized initial conditions. The am-
plitude of the initial perturbation waves (A) and
time (t) are considered as the parameters in a two-
dimensional parameter space. An adaptive sam-
pling (AS) method in time is proposed to reduce the
number of samples in the parameter space during
the linear regime of the RTI. In this light, the reduced
order modeling (ROM) methods have been taken in-
to consideration due to its effectiveness in solving
the parameterized problems.
Featuring an offline-online operational framework,
the reduced basis method (RBM) is a powerful tech-
nique for the ROM methods of the parameterized
problems. In general, RBM aims to approximate any
member of the solution manifold with a low number
of reduced basis (RB) functions.
To construct the ROM, which is a linear combina-
tion of the RB functions, the POD is applied to gen-
erate the RB functions from the snapshots. The cor-
responding coefficients of the RB functions are then
computed by a training with the ANN. Once the
ROM is built, the desired solution with a given pa-
rameter can be recovered online efficiently with a s-
light loss of accuracy.

REDUCED BASIS METHOD (RBM)
The general one-dimensional formulation of the
well-posed parameterized time-dependent problem
is given by

L[Q(x, t; ν)] +N [Q(x, t; ν)] = S(x, t; ν), (1)

(x, t, ν) ∈ Ω× T ×W,
with some properly defined initial and boundary
conditions. L[·;µ] andN [·;µ] are the linear and non-
linear operators with respect to x and t, respectively.
RBM seeks an approximate solution to problem (1)
as a linear combination of parameter independent
reduced basis (RB) functions {ψ1, · · · , ψL}, i.e.,

Q(x;µ) ≈ Qrb(x;µ) =
L∑

i=1

ci(µ)ψi(x) ∈ Vrb, (2)

where ~a(µ) = [a1(µ), · · · , aL(µ)]T ∈ RL is the vector
of reduced coefficients, Vrb = span{ψ1, · · · , ψL} is
the reduced space. Now, the goal is to find the RB ψi

and the corresponding coefficients ci, and to recover
the reduced-order solution efficiently.

POD
The proper orthogonal decomposition (POD) is one
of the methods to generate the RB. Consider the s-
napshots matrix Q ∈ RM×N gathering the nodal val-
ues of the snapshots in a column-wise sense, i.e.,

Q = [ ~Qh(µ1)| · · · | ~Qh(µN )], (3)

where the snapshots are the full-order solutions of
Eq. (1) with parameters {µ1, · · · , µN}.
Then each vector from Q can be written as

~Qh(µi) ≈ Φ~ci, i = 1, · · · , N, (4)

where Φ = [ψ1(x), · · · , ψL(x)] ∈ RM×L, ~ci = ~c(µi).

Coefficients: Minimizing the error

e =
N∑
i=1

∣∣∣∣∣∣ ~Qh(µi)−
L∑

j=1

cij ~ψj(x)
∣∣∣∣∣∣2,

one can obtain

cj(µi) = ~Qh(µi)
T ~ψj(x). (5)

As for the RB, one can construct the correlation ma-
trix

D = QTQ. (6)
Then the RB take the form

ψi = Q~viλ
−1/2
i , (7)

where ~vi is the ith eigenvector of D with the corre-
sponding eigenvalues λi taken in a decreasing order.
Therefore, the RB matrix can be written as

Φ = [ψ1, · · · , ψL]. (8)

RBM USING ANN
We applied the MLP neural network to obtain the
mapping relationship between the parameters µ and
the coefficients ~c(µ) = ΦT ~Qh(µ), that is,

• The training input: µ ∈ P .

• The training output: ΦT ~Qh(µ).

Then, given a new parameter µ∗, the associated
reduced-order solution is simply given by

~Qrb(µ
∗) = ΦΦT ~Qh(µ∗). (9)

Here, the cascade-forward network is used. It in-
cludes a weight connection from the input to each
layer and from each layer to the successive layer-
s, which might improve the speed of the network
learning the desired relationship.

RTI- AMPLITUDE A
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red: full-order solutions, blue:reduced-order solutions.

RTI- TIME t
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Left: Uniform sampling, Right: Adaptive sampling.
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RTI- (A, t)
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Solid: full-order solutions, Dashed: adaptive solutions.
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1-D VISCOUS BURGERS EQUATION
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Qxx, (x, t, ν) ∈ (−1, 1)×(0, 1]×[1, 7.5],

Q(−1, t; ν) = Q(1, t; ν) = 0, Q(x, 0; ν) = − sin(πx),

ν = 1.125 ν = 3.125
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Solid: full-order solutions, Dashed: reduced-order solutions.
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