

Scale invariant WENO scheme with modified Z-type nonlinear weights for solving hyperbolic conservation law

ABSTRACT

A simple and effective modification of the Z-type nonlinear weights in a high order weighted essentially nonoscillatory (WENO) scheme that achieves both the optimal order of accuracy at high order critical points with a smooth function (Cp-property) and the scale invariant property has been designed. A scale invariant WENO scheme dictates that the adaptive WENO reconstruction/interpolation procedure should be valid and independent of the scaling of the data and the sensitivity parameter (Si-property). It is particularly necessary when the scaling is very small in order to avoid violating the essentially non-oscillatory (ENO) property at a discontinuity. In the modified Z-type nonlinear weights of the WENO-D scheme [Wang et al., J. Sci. Comput. 81 (2019) 1329–1358], the scaling dependency of both the modifier function and the sensitivity parameter is removed by a descaling function, which is a global average of the function values. It renders the modified WENO-D (WENO-Dm) scheme satisfies both the Cp-property and the Si-property simultaneously.

PROPERTIES

Definition 1 Critical Point: If $f'(x_c) = ... = f^{n_{cp}}(x_c) = 0$ but $f^{n_{cp}+1}(x_c) \neq 0$, the smooth function f(x) is said to have a critical point of order $n_{cp} = n$ at x_c .

Definition 2 Cp_{ε} -**Property:** For any given power parameter p and a variable sensitivity parameter $\varepsilon = \varepsilon(\Delta x)$, which is a function of grid spacing Δx , a (2r-1) order WENO scheme is said to be satisfying the Cp_{ε} -property if the WENO scheme achieves its optimal order of accuracy in approximating the first derivative of a smooth function regardless of critical points up to the *r* order.

Definition 3 Cp-Property: For any given power parameter p and sensitivity parameter ε , a (2r - 1) order WENO scheme is said to be satisfying the Cp-property if the WENO scheme achieves its optimal order of accuracy in approximating the first derivative of a smooth function regardless of critical points up to the *r* order.

Definition 4 Si-Property (Scale Invariant/Self Similari**ty):** The function f(x) is said to be scale invariant if $f(\kappa x) =$ $\kappa f(x)$, for all scaling factor κ .

WENO-DM RECONSTRUCTION

The (2r - 1) degree polynomial approximation $q_{i+\frac{1}{2}}$ is built through a convex combination of the interpolated values $q^k(x_{i\pm\frac{1}{2}})$ at $x_{i\pm\frac{1}{2}}$ on the substencil S_k = $\{x_{i-(r-1)+k}, \cdots, x_{i+k}\}$, that is, $q_{i\pm\frac{1}{2}} = \sum_{k=0}^{r-1} \omega_k q(x_{i\pm\frac{1}{2}})$, where the nonlinear weights ω_k are given as

WENO-DM RECONSTRUCTION

where the linear weights $\left\{d_0 = \frac{1}{10}, d_1 = \frac{3}{5}, d_2 = \frac{3}{10}\right\}$ and power parameter p = 2 are used. The modifier function Φ is redefined as

 $\Phi = \min\{1, \phi/\mu\}, \phi = \sqrt{|\beta_0 - 2\beta_1 + \beta_2|}, \mu = \|\mu\| + 10^{-40}.$

The Si-property requires that the descaling function μ must have the same scaling (e.g. dimensional units) of $\sqrt{\beta_k}$ in order for the terms ϕ/μ and $\varepsilon\mu^2$ to be scale invariant. This will lead to a scale invariant form of nonlinear weight α_k . Hence, we define the descaling function μ to be the global average of absolute values of the function values $\{f_i, i =$ $0, \ldots, N$ being reconstructed, that is,

$$\|\mu\| = \frac{1}{N+1} \sum_{i=0}^{N} f_i, \qquad (2)$$

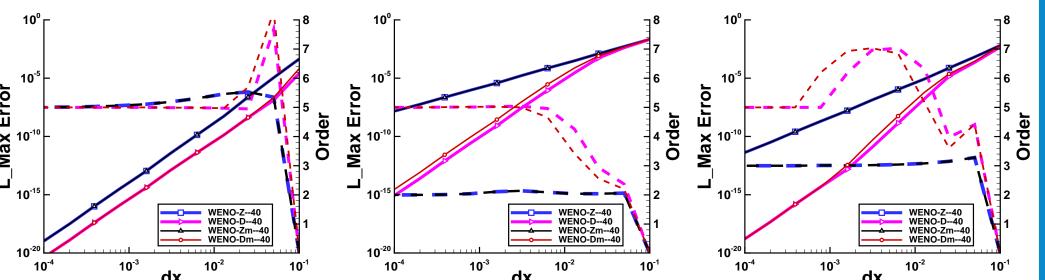
where f_i is the function being reconstructed/interpolated.

- In the scalar case $f_i = |q(x_i)|$, where q(x) can be the conservative variables \mathbf{Q} or flux \mathbf{F} used in a WENO finite volume or difference scheme respectively.
- In the system case (e.g. the Euler equation), if $q^{(m)}(x)$ is the *m*-th component of the characteristic flux variables LF, where the flux F is projected onto the characteristic fields spanned by M left Roe-averaged eigenvectors L at $x_{i+\frac{1}{2}}$, then $f_i =$ $\frac{1}{5} \sum_{j=-2}^{2} |q^{(m)}(x_{i+j})|, m = 1, \dots, M.$

CRITICAL POINTS

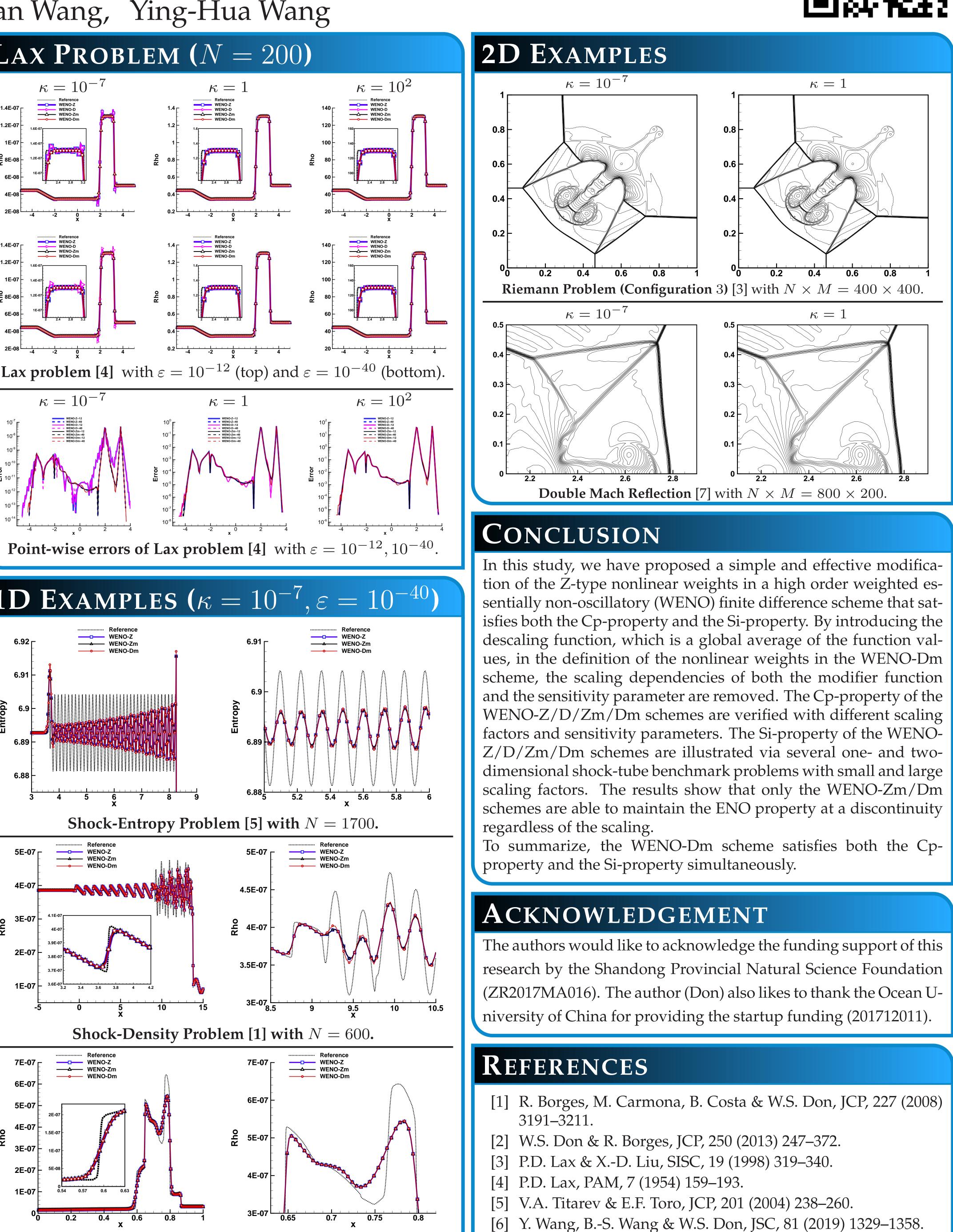
Consider the following test function

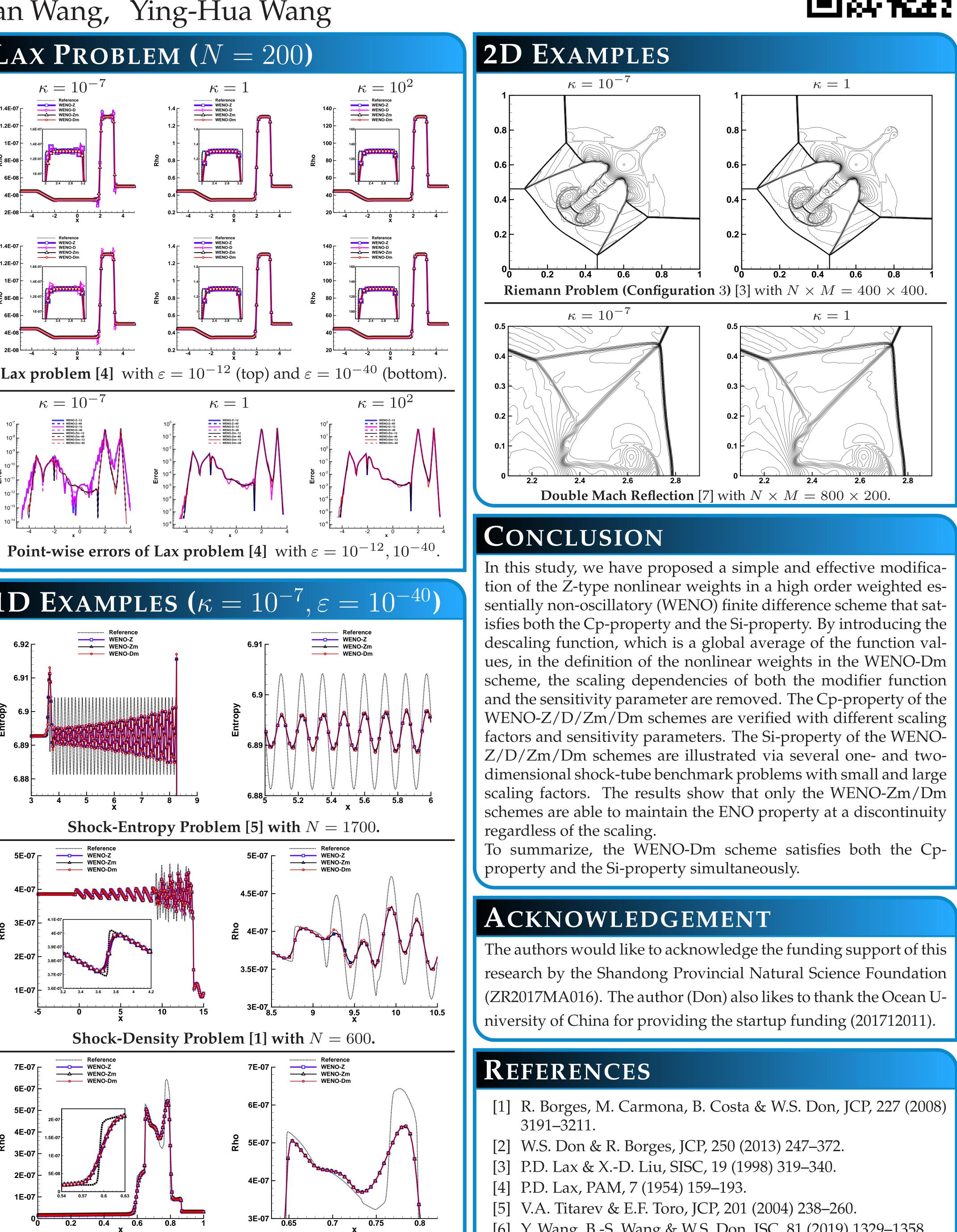
 $f(x) = \kappa x^{n+1} e^{\lambda x}, \ x \in [-1, 1], \ \lambda = 0.75.$ (3)This function has a critical point of order $n_{cp} = n$ at x = 0 [2]. We will only present the L^{∞} error (solid line) and the order of accuracy (dashed line) of the four WENO schemes with a constant sensitivity parameters ($\varepsilon = 10^{-40}$) and with ($\kappa = 1$ and $n_{cp} =$ 1, 2, 3) in the figure and with ($\kappa = 10^{-7}$ and $n_{cp} = 3$) in Table.

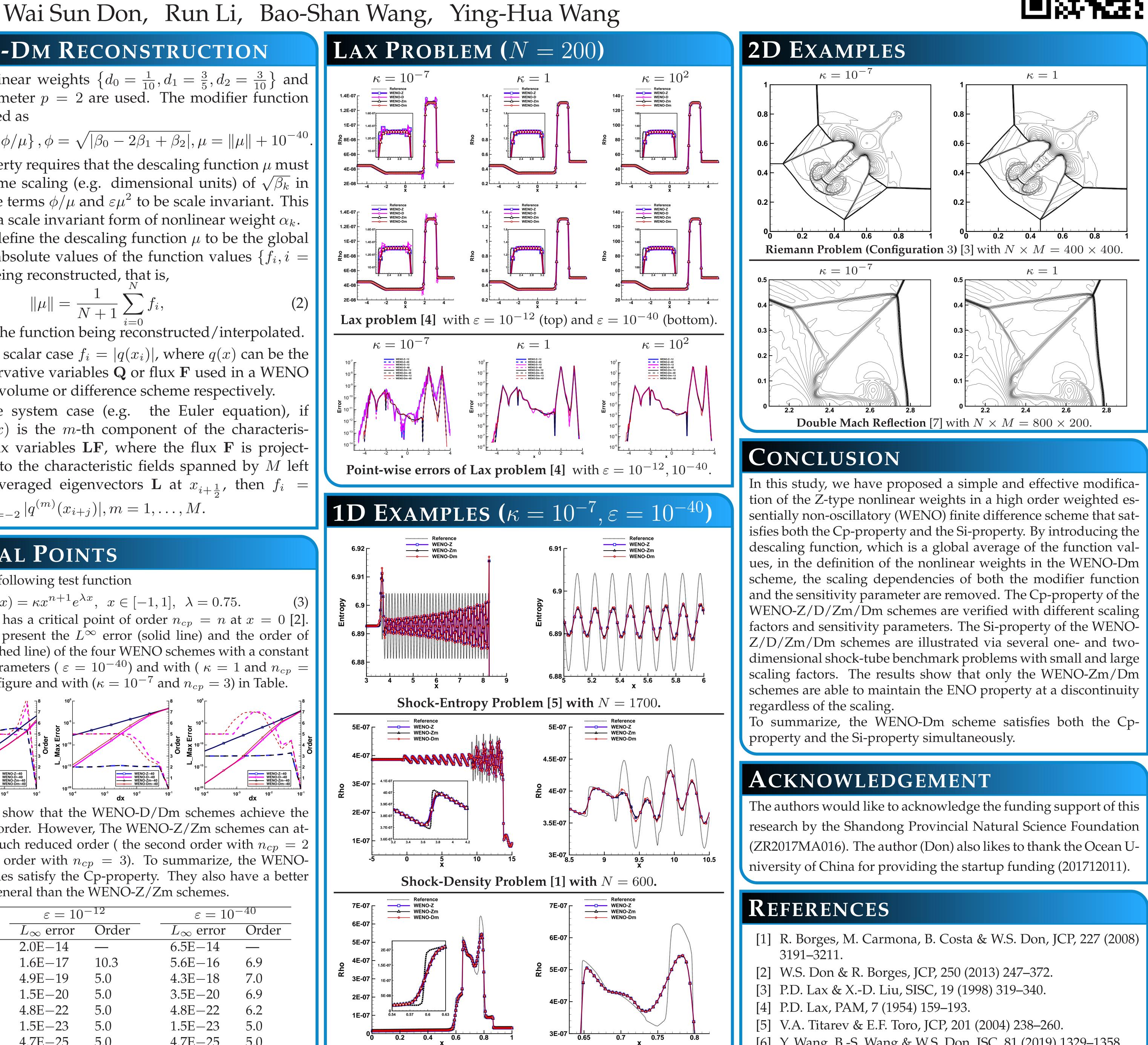


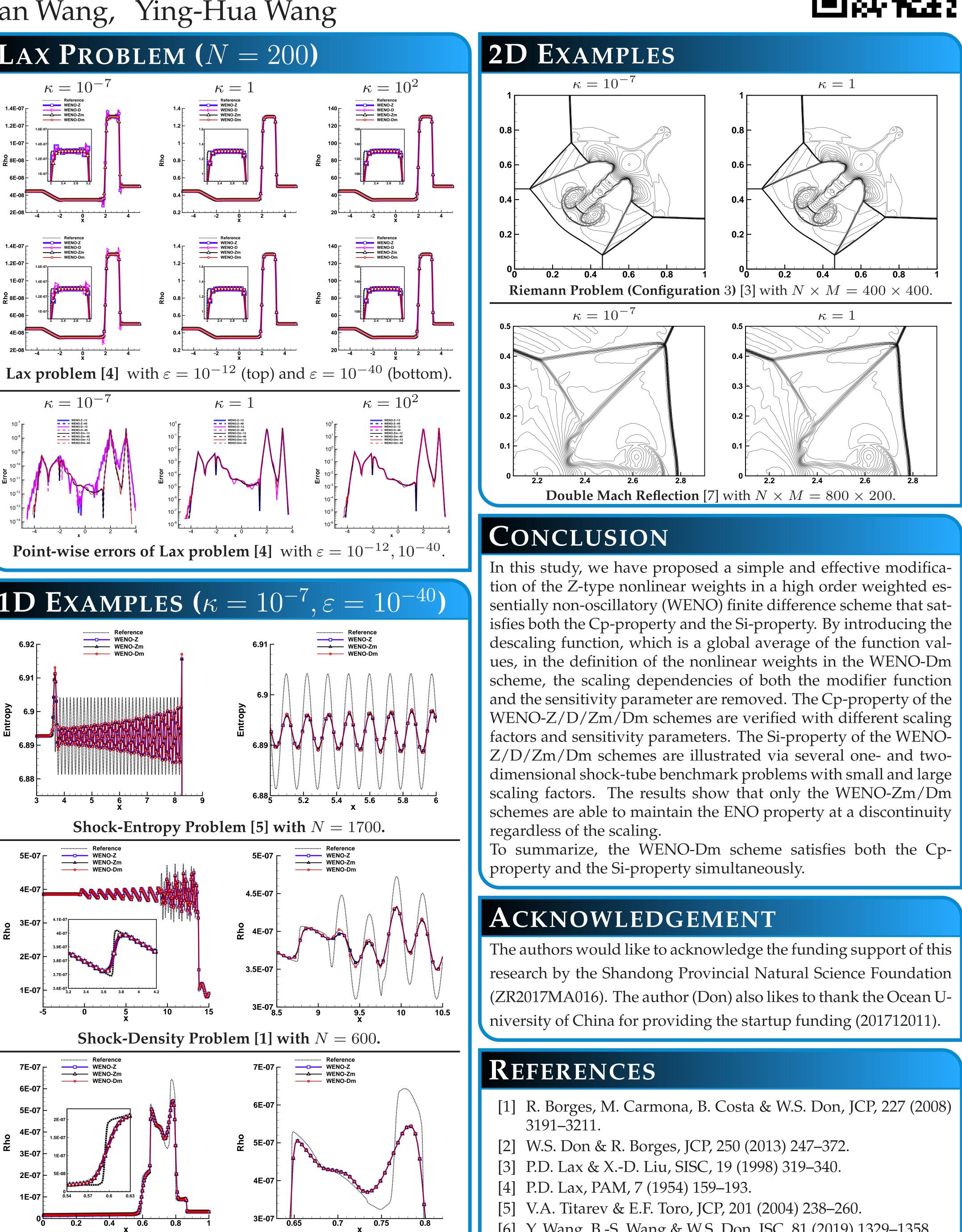
These results show that the WENO-D/Dm schemes achieve the optimal fifth order. However, The WENO-Z/Zm schemes can attain only a much reduced order (the second order with $n_{cp} = 2$ and the third order with $n_{cp} = 3$). To summarize, the WENO-D/Dm schemes satisfy the Cp-property. They also have a better accuracy in general than the WENO-Z/Zm schemes.

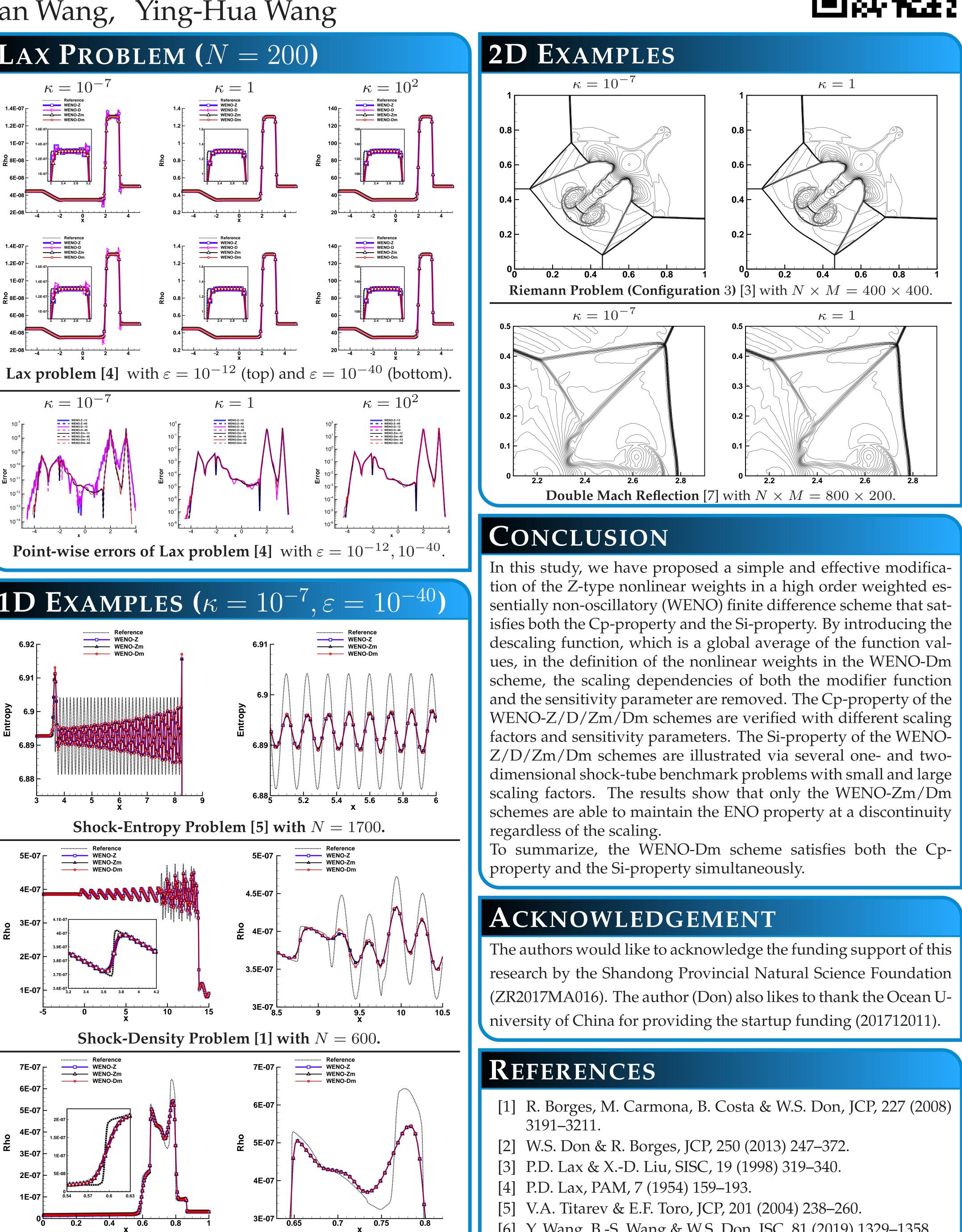
	$\varepsilon = 10^{-12}$		\mathcal{E} :	$\varepsilon = 10^{-40}$	
N	L_{∞} error	Order	L_{∞} er	ror Orde	r
160	2.0E - 14		6.5E-	14 —	
320	1.6E - 17	10.3	5.6E - 1	16 6.9	
640	4.9E - 19	5.0	4.3E - 1	18 7.0	
1280	1.5E - 20	5.0	3.5E-2	20 6.9	
2560	4.8E - 22	5.0	4.8E - 2	22 6.2	
5120	1.5E - 23	5.0	1.5E-2	23 5.0	
10240	4.7E - 25	5.0	4.7E-2	25 5.0	
20480	1.5E-26	5.0	1.5E-2	26 5.0	











Blastwave Problem [7] with N = 400.

[7] P. Woodward & P. Colella, JCP, 54 (1984) 115–173.