
Scale invariant WENO scheme with modified Z-type nonlinear weights
for solving hyperbolic conservation law

Wai Sun Don, Run Li, Bao-Shan Wang, Ying-Hua Wang
ABSTRACT
A simple and effective modification of the Z-type non-
linear weights in a high order weighted essentially non-
oscillatory (WENO) scheme that achieves both the optimal
order of accuracy at high order critical points with a smooth
function (Cp-property) and the scale invariant property has
been designed. A scale invariant WENO scheme dictates
that the adaptive WENO reconstruction/interpolation pro-
cedure should be valid and independent of the scaling of
the data and the sensitivity parameter (Si-property). It is
particularly necessary when the scaling is very small in or-
der to avoid violating the essentially non-oscillatory (ENO)
property at a discontinuity. In the modified Z-type non-
linear weights of the WENO-D scheme [Wang et al., J. Sci.
Comput. 81 (2019) 1329–1358], the scaling dependency of
both the modifier function and the sensitivity parameter is
removed by a descaling function, which is a global aver-
age of the function values. It renders the modified WENO-
D (WENO-Dm) scheme satisfies both the Cp-property and
the Si-property simultaneously.

PROPERTIES
Definition 1 Critical Point: If f ′(xc) = ... = fncp(xc) = 0
but fncp+1(xc) 6= 0, the smooth function f(x) is said to have a
critical point of order ncp = n at xc.
Definition 2 Cpε-Property: For any given power parameter
p and a variable sensitivity parameter ε = ε(∆x), which is a
function of grid spacing ∆x, a (2r − 1) order WENO scheme
is said to be satisfying the Cpε-property if the WENO scheme
achieves its optimal order of accuracy in approximating the first
derivative of a smooth function regardless of critical points up to
the r order.
Definition 3 Cp-Property: For any given power parameter p
and sensitivity parameter ε, a (2r − 1) order WENO scheme
is said to be satisfying the Cp-property if the WENO scheme
achieves its optimal order of accuracy in approximating the first
derivative of a smooth function regardless of critical points up to
the r order.
Definition 4 Si-Property (Scale Invariant/Self Similari-
ty): The function f(x) is said to be scale invariant if f(κx) =
κ f(x), for all scaling factor κ.

WENO-DM RECONSTRUCTION
The (2r − 1) degree polynomial approximation qi± 1

2
is

built through a convex combination of the interpolat-
ed values qk(xi± 1

2
) at xi± 1

2
on the substencil Sk =

{xi−(r−1)+k, · · · , xi+k}, that is, qi± 1
2

=
∑r−1
k=0 ωkq(xi± 1

2
),

where the nonlinear weights ωk are given as

ωk =
αk∑r−1
j=0 αj

, αk = dk

(
1 + Φ

(
τ2r−1

βk + εη2

)p)
, (1)

WENO-DM RECONSTRUCTION
where the linear weights

{
d0 = 1

10
, d1 = 3

5
, d2 = 3

10

}
and

power parameter p = 2 are used. The modifier function
Φ is redefined as

Φ = min {1, φ/µ} , φ =
√
|β0 − 2β1 + β2|, µ = ‖µ‖+ 10−40.

The Si-property requires that the descaling function µmust
have the same scaling (e.g. dimensional units) of

√
βk in

order for the terms φ/µ and εµ2 to be scale invariant. This
will lead to a scale invariant form of nonlinear weight αk.
Hence, we define the descaling function µ to be the global
average of absolute values of the function values {fi, i =
0, . . . , N} being reconstructed, that is,

‖µ‖ =
1

N + 1

N∑
i=0

fi, (2)

where fi is the function being reconstructed/interpolated.
• In the scalar case fi = |q(xi)|, where q(x) can be the

conservative variables Q or flux F used in a WENO
finite volume or difference scheme respectively.

• In the system case (e.g. the Euler equation), if
q(m)(x) is the m-th component of the characteris-
tic flux variables LF, where the flux F is project-
ed onto the characteristic fields spanned by M left
Roe-averaged eigenvectors L at xi+ 1

2
, then fi =

1
5

∑2
j=−2 |q

(m)(xi+j)|,m = 1, . . . ,M .

CRITICAL POINTS
Consider the following test function

f(x) = κxn+1eλx, x ∈ [−1, 1], λ = 0.75. (3)
This function has a critical point of order ncp = n at x = 0 [2].
We will only present the L∞ error (solid line) and the order of
accuracy (dashed line) of the four WENO schemes with a constant
sensitivity parameters ( ε = 10−40) and with ( κ = 1 and ncp =
1, 2, 3) in the figure and with (κ = 10−7 and ncp = 3) in Table.
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These results show that the WENO-D/Dm schemes achieve the
optimal fifth order. However, The WENO-Z/Zm schemes can at-
tain only a much reduced order ( the second order with ncp = 2
and the third order with ncp = 3). To summarize, the WENO-
D/Dm schemes satisfy the Cp-property. They also have a better
accuracy in general than the WENO-Z/Zm schemes.

ε = 10−12 ε = 10−40

N L∞ error Order L∞ error Order
160 2.0E−14 — 6.5E−14 —
320 1.6E−17 10.3 5.6E−16 6.9
640 4.9E−19 5.0 4.3E−18 7.0

1280 1.5E−20 5.0 3.5E−20 6.9
2560 4.8E−22 5.0 4.8E−22 6.2
5120 1.5E−23 5.0 1.5E−23 5.0

10240 4.7E−25 5.0 4.7E−25 5.0
20480 1.5E−26 5.0 1.5E−26 5.0

LAX PROBLEM (N = 200)
κ = 10−7 κ = 1 κ = 102
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Lax problem [4] with ε = 10−12 (top) and ε = 10−40 (bottom).

κ = 10−7 κ = 1 κ = 102
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Point-wise errors of Lax problem [4] with ε = 10−12, 10−40.

1D EXAMPLES (κ = 10−7, ε = 10−40)
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Shock-Entropy Problem [5] with N = 1700.
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Shock-Density Problem [1] with N = 600.
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Blastwave Problem [7] with N = 400.

2D EXAMPLES
κ = 10−7 κ = 1
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Riemann Problem (Configuration 3) [3] withN ×M = 400 × 400.
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CONCLUSION
In this study, we have proposed a simple and effective modifica-
tion of the Z-type nonlinear weights in a high order weighted es-
sentially non-oscillatory (WENO) finite difference scheme that sat-
isfies both the Cp-property and the Si-property. By introducing the
descaling function, which is a global average of the function val-
ues, in the definition of the nonlinear weights in the WENO-Dm
scheme, the scaling dependencies of both the modifier function
and the sensitivity parameter are removed. The Cp-property of the
WENO-Z/D/Zm/Dm schemes are verified with different scaling
factors and sensitivity parameters. The Si-property of the WENO-
Z/D/Zm/Dm schemes are illustrated via several one- and two-
dimensional shock-tube benchmark problems with small and large
scaling factors. The results show that only the WENO-Zm/Dm
schemes are able to maintain the ENO property at a discontinuity
regardless of the scaling.
To summarize, the WENO-Dm scheme satisfies both the Cp-
property and the Si-property simultaneously.
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