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1. ABSTRACT
In solving nonlinear hyperbolic conservation laws, adap-
tive numerical diffusion is achieved through a modified
local Lax-Friedrichs (LLF) flux based on the fifth-order
characteristic-wise alternative WENO-Z finite-difference
scheme (AWENO). The numerical diffusion coefficients of
the LLF flux are adapted by a modification function. By
the modification function, less numerical diffusion is used
in the smooth regions of the solution to improve the res-
olution of the small-scale structures, and more numerical
diffusion is adaptively used in the discontinuous regions
to avoid numerical oscillation. In order to enhance the ro-
bustness of the numerical scheme, the adjustment range of
the numerical diffusion coefficients are limited to a given
upper and lower bound. Some one- and two-dimensional
benchmark numerical examples with discontinuities show
that the scheme can well reduce the numerical diffusion in
the smooth regions, improve the resolution of the solution,
and has strong ability to capture fine scale structures, while
ensuring the robustness of the numerical scheme even in a
long term simulation.

2.1. THE WENO INTERPOLATION PROCEDURE
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Figure 1: The computational uniformly spaced grid, with cell centers xi
and cell boundaries x

i+1
2

, and the 5-points stencilS5, composed of three 3-

points substencils S0, S1, S2, used in the fifth-order WENO reconstruction
step.

In the fifth order WENO scheme with Z-type weights
(WENO-Z), the nonlinear weights are

αk = dk

(
1 +

(
τ5

βk + ε

)p)
, ωzk =

αk∑2
j=0 αj

, k = 0, ..., 2.

where d0 = 1
16
, d1 = 5

8
, d2 = 5

16
are the ideal weights

which guarantees the fifth order (optimal) accuracy of the
overall scheme. And the global optimal order smoothness
indicator τ5 is given as τ5 = |β0 − β2|,along with the local
lower order smoothness indicators
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2.2. THE FIFTH-ORDER AWENO SCHEME

Consider the hyperbolic conservation laws with the for-
mulation

Qt +∇ · F(Q) = 0,

Assume that F(Q) is a smooth function of Q(x) and need
to find a consistent numerical flux F̂(x) such that
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The fifth-order numerical flux F̂i+ 1
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is obtained by the
sixth-order accurate Taylor expansion of F at x = xi+ 1

2
,

F̂
i+1

2
= F

i+1
2
−

1

24
∆x

2
Fxx|i+1

2
+

7

5760
∆x

4
Fxxxx|i+1

2
+O(∆x

6
).

The first term of the numerical flux is approximated by
Fi+ 1
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= h(Q−

i+ 1
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,Q+

i+ 1
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) with the values Q±
i+ 1
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obtained by

the fifth order WENO interpolation procedure which is ap-
plied to the conservative variables rather than the flux func-
tions. The two-argument function h(Q−,Q+) is a mono-
tone flux. The LLF flux and its modification are used.
The second and fourth derivatives terms are
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3. THE LOCAL LAX-FRIEDRICHS (LLF) FLUX

The LLF flux is defined as
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where the numerical diffusion coefficients αi+ 1
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tral radius of the Jacobian A(Q) = ∂F
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and its physical
meaning is the maximum local propagation speed.

4.1. THE LLF-M FLUX
The modified LLF flux is abbreviated as the LLF-M flux
with the form
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ᾱ
i+1

2
(Q

+

i+ 1
2

−Q
−
i+ 1

2

)

]
,

with ᾱi+ 1
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4.2. THE MODIFICATION FUNCTION

An important part of the modification function κ is the s-
moothness indicators derived from the WENO-η scheme,
in which the lower order local smoothness indicators ηk
(similar to βk) are
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And the global higher order smoothness indicator is

τη5 = |η0 − η2|+O(∆x6).
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is the mapping function of variable τs.
The variable τs used here to detect the smoothness of the
solution is

τs =

{
0, if τη5 < O(∆x2)
τη5 , else. (2)

The parameters δ = 10, γ = 1, κmin = 0.1 and ηmax =

max (η0, η1, η2) are used.

5.1. 1D NUMERICAL RESULTS
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Figure 2: Entropy(Top) and time evolution of numerical diffusion coeffi-
cients α and ᾱ(Bottom) of the one-dimensional shock-entropy wave inter-
action problem computed by the AWENO-Z5 scheme using the LLF and
LLF-M fluxes withN = 1500.

5.2. 2D NUMERICAL RESULTS
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Figure 3: (Color online) The density of FFS problem as computed by the
AWENO-Z5 scheme using the LLF and LLF-M fluxes with the mesh reso-
lutionN ×M = 1200× 600 at time t = 4.0.

LL
F

flu
x

LL
F-

M
flu

x

Figure 4: The density of FFS problem.

5.3. THE CPU TIMINGS
Table 1: The CPU times (in seconds) of the Riemann problem, the
DMR problem and the FFS problem as computed by the AWENO
scheme using the LLF and LLF-M fluxes where (ratio) are the
ratios of CPU times between the proposed flux and the LLF flux.

N ×M LF flux(s) LF-M flux(s)
Riemann 400× 400 4.5E+03 4.6E+03 (1.02)
FFS 1200× 600 2.0E+05 2.2E+05 (1.10)
DMR 800× 200 3.4E+03 3.6E+03 (1.05)

The timing shows that the calculation efficiency of the two scheme
is basically the same.
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