Home » Publications » Archives
- B.-S. Wang, W.S. Don,
Fifth-Order Bound-, Positivity-, and Equilibrium-Preserving Affine-Invariant AWENO Scheme for Two-Medium γ-based Model of Stiffened Gas, 2023, under review.
- B.-S. Wang, N.-K. Garg,
Third-Order A-WENO Finite-Difference Schemes with a Jordan Canonical Based Splitting Flux, 2023, under review.
- J.-L. Li, W.S. Don, C.-F. Wang, B.-S. Wang,
Spatial-temporal adaptive-order positivity-preserving WENO finite difference scheme with enhanced CFL condition for Euler equations with extreme conditions, 2023, under review.
- C.-F. Wang, W.S. Don, J.-L. Li, B.-S. Wang,
Improved Sixth-Order WENO Finite Difference Schemes for Hyperbolic Conservation Laws, 2023, under review.
- Z. Gao, S. Guo, B.-S. Wang, Y. Gu,
High Order Bound- and Positivity-Preserving Finite Difference Affine-Invariant AWENO Scheme for the Five-Equation Model of Two-Medium Flows.
J. Comput. Phys., 2023, under review.
- B. Ren, Z.Gao, Y. Gu, S. Xie, X. Zhang,
A positivity-preserving and well-balanced high order compact finite difference scheme for shallow water equations,
Commun. Comput. Phys., Accepted, 2023.
- Y. Gu, Z. Gao. G. Hu, P. Li, Q. Fu,
High Order Well-Balanced Positivity-Preserving Scale-invariant AWENO Scheme for Euler Systems with Gravitational Field,
J. Comput. Phys., 488, 112190, 2023.
- Y. Chen, L. Liu, X. Chen, Z. Wei, X. Sun, C. Yuan, Z. Gao,
Data driven three-dimensional temperature and salinity anomaly reconstruction of the northwest Pacific Ocean,
Front. Mar. Sci., 10:1121334, 2023.
- Y. Chen, X. Sun, Y. Lin, Z. Gao,
An Adaptive Non-Intrusive Multi-Fidelity Reduced Basis Method for Parameterized Partial Differential Equations,
East Asian J. Appl. Math., 13, 398-419, 2023.
- Y. Lin, Z. Gao, Y. Chen, X. Sun,
A Dynamic Mode Decomposition Based Reduced-Order Model For Parameterized Time-Dependent Partial Differential Equations,
J. Sci. Comput., 95, 70, 2023.
- K.-B. Tian, W.S. Don, B.-S. Wang,
High-order weighted essentially non-oscillatory finite difference scheme with adaptive dual order ideal weights for hyperbolic conservation laws,
Appl. Numer. Math., 187, 50-70, 2023.
- B.-S. Wang, W.S. Don, P. Li,
Fifth-order well-balanced positivity-preserving finite difference AWENO scheme with hydrostatic reconstruction for hyperbolic chemotaxis models,
Appl. Numer. Math., 186, 41-56, 2023.
- B.-S. Wang, W.S. Don, A. Kurganov, Y. Liu,
Fifth-Order A-WENO Schemes Based on the Adaptive Diffusion Central-Upwind Rankine-Hugoniot Fluxes,
Commun. Appl. Math. Comput., 5, 295-314, 2023.
- C. Liu, H. Tian, W.S. Don, H. Wang,
A fast computational framework for the linear bond-based peridynamic model. CoRR abs/2301.11828 (2023)
- P. Li, T. Li, W.S. Don, B.-S. Wang,
Scale-invariant multi-resolution alternative WENO scheme for Euler equations,
J. Sci. Comput., 94, 15, 2023.
- Y. Wang, W.S. Don, B.-S. Wang, Fifth order AWENO finite difference scheme with adaptive numerical diffusion, Computers and Fluids, 107543, 2022.
- Y. Wang, B.-S. Wang, L. Ling, W.S. Don,
A time-continuous embedding method for scalar hyperbolic conservation laws on one-dimensional manifolds,
J. Sci. Comput., 94, 83, 2022.
- H. Zhu, Z. Wang, H. Wang, Q. Zhang, Z. Gao,
Troubled-Cell Indication Using K-means Clustering with Unified Parameters,
J. Sci. Comput., 93, 21, 2022.
- B.-S. Wang, W.S. Don,
Affine-Invariant WENO Weights and Operator,
Appl. Numer. Math., 181, 630-646, 2022.
- B.-S. Wang, P. Li, Z. Gao,
High order well-balanced and positivity-preserving finite difference alternative WENO scheme with hydrostatic reconstruction for shallow water equations,
Appl. Numer. Math., 181, 483-502, 2022.
- Y. Gu, D. Luo, Z. Gao, Y. Chen,
An Adaptive Moving Mesh Method for the Five-equation Model,
Commun. Comput. Phys., 32, 189-221, 2022.
- Q. Fu, Z. Gao, Y. Gu, P. Li,
High order well-balanced conservative finite difference AWENO scheme with hydrostatic reconstruction for the Euler equations under gravitational fields,
Appl. Numer. Math., 180, 1-15, 2022.
- Z. Gao, Y. Lin, X. Sun, X. Zeng,
A reduced order method for nonlinear parameterized partial differential equations using dynamic mode decomposition coupled with k-nearest neighborhood,
J. Comput. Phys., 452, 110907, 2022.
- Y. Shi, S. Xie, D. Liang,
A Fourth-Order Block-Centered Compact Difference Scheme for Nonlinear Contaminant Transport Equations with Adsorption,
Appl. Numer. Math., 171, 212-232, 2022.
- W.S. Don, R. Li, B.-S. Wang, Y. Wang,
A novel and robust scale-invariant WENO scheme for hyperbolic conservation laws,
J. Comput. Phys., 448, 110724, 2022.