Home » Publications » Archives
  1. B.-S. Wang, W.S. Don, Fifth-Order Bound-, Positivity-, and Equilibrium-Preserving Affine-Invariant AWENO Scheme for Two-Medium γ-based Model of Stiffened Gas, 2023, under review.
  2. B.-S. Wang, N.-K. Garg, Third-Order A-WENO Finite-Difference Schemes with a Jordan Canonical Based Splitting Flux, 2023, under review.
  3. J.-L. Li, W.S. Don, C.-F. Wang, B.-S. Wang, Spatial-temporal adaptive-order positivity-preserving WENO finite difference scheme with enhanced CFL condition for Euler equations with extreme conditions, 2023, under review.
  4. C.-F. Wang, W.S. Don, J.-L. Li, B.-S. Wang, Improved Sixth-Order WENO Finite Difference Schemes for Hyperbolic Conservation Laws, 2023, under review.
  5. Z. Gao, S. Guo, B.-S. Wang, Y. Gu, High Order Bound- and Positivity-Preserving Finite Difference Affine-Invariant AWENO Scheme for the Five-Equation Model of Two-Medium Flows. J. Comput. Phys., 2023, under review.
  6. B. Ren, Z.Gao, Y. Gu, S. Xie, X. Zhang, A positivity-preserving and well-balanced high order compact finite difference scheme for shallow water equations, Commun. Comput. Phys., Accepted, 2023.
  7. Y. Gu, Z. Gao. G. Hu, P. Li, Q. Fu, High Order Well-Balanced Positivity-Preserving Scale-invariant AWENO Scheme for Euler Systems with Gravitational Field, J. Comput. Phys., 488, 112190, 2023.
  8. Y. Chen, L. Liu, X. Chen, Z. Wei, X. Sun, C. Yuan, Z. Gao, Data driven three-dimensional temperature and salinity anomaly reconstruction of the northwest Pacific Ocean, Front. Mar. Sci., 10:1121334, 2023.
  9. Y. Chen, X. Sun, Y. Lin, Z. Gao, An Adaptive Non-Intrusive Multi-Fidelity Reduced Basis Method for Parameterized Partial Differential Equations, East Asian J. Appl. Math., 13, 398-419, 2023.
  10. Y. Lin, Z. Gao, Y. Chen, X. Sun, A Dynamic Mode Decomposition Based Reduced-Order Model For Parameterized Time-Dependent Partial Differential Equations, J. Sci. Comput., 95, 70, 2023.
  11. K.-B. Tian, W.S. Don, B.-S. Wang, High-order weighted essentially non-oscillatory finite difference scheme with adaptive dual order ideal weights for hyperbolic conservation laws, Appl. Numer. Math., 187, 50-70, 2023.
  12. B.-S. Wang, W.S. Don, P. Li, Fifth-order well-balanced positivity-preserving finite difference AWENO scheme with hydrostatic reconstruction for hyperbolic chemotaxis models, Appl. Numer. Math., 186, 41-56, 2023.
  13. B.-S. Wang, W.S. Don, A. Kurganov, Y. Liu, Fifth-Order A-WENO Schemes Based on the Adaptive Diffusion Central-Upwind Rankine-Hugoniot Fluxes, Commun. Appl. Math. Comput., 5, 295-314, 2023.
  14. C. Liu, H. Tian, W.S. Don, H. Wang, A fast computational framework for the linear bond-based peridynamic model. CoRR abs/2301.11828 (2023)
  15. P. Li, T. Li, W.S. Don, B.-S. Wang, Scale-invariant multi-resolution alternative WENO scheme for Euler equations, J. Sci. Comput., 94, 15, 2023.
  16. Y. Wang, W.S. Don, B.-S. Wang, Fifth order AWENO finite difference scheme with adaptive numerical diffusion, Computers and Fluids, 107543, 2022.
  17. Y. Wang, B.-S. Wang, L. Ling, W.S. Don, A time-continuous embedding method for scalar hyperbolic conservation laws on one-dimensional manifolds, J. Sci. Comput., 94, 83, 2022.
  18. H. Zhu, Z. Wang, H. Wang, Q. Zhang, Z. Gao, Troubled-Cell Indication Using K-means Clustering with Unified Parameters, J. Sci. Comput., 93, 21, 2022.
  19. B.-S. Wang, W.S. Don, Affine-Invariant WENO Weights and Operator, Appl. Numer. Math., 181, 630-646, 2022.
  20. B.-S. Wang, P. Li, Z. Gao, High order well-balanced and positivity-preserving finite difference alternative WENO scheme with hydrostatic reconstruction for shallow water equations, Appl. Numer. Math., 181, 483-502, 2022.
  21. Y. Gu, D. Luo, Z. Gao, Y. Chen, An Adaptive Moving Mesh Method for the Five-equation Model, Commun. Comput. Phys., 32, 189-221, 2022.
  22. Q. Fu, Z. Gao, Y. Gu, P. Li, High order well-balanced conservative finite difference AWENO scheme with hydrostatic reconstruction for the Euler equations under gravitational fields, Appl. Numer. Math., 180, 1-15, 2022.
  23. Z. Gao, Y. Lin, X. Sun, X. Zeng, A reduced order method for nonlinear parameterized partial differential equations using dynamic mode decomposition coupled with k-nearest neighborhood, J. Comput. Phys., 452, 110907, 2022.
  24. Y. Shi, S. Xie, D. Liang, A Fourth-Order Block-Centered Compact Difference Scheme for Nonlinear Contaminant Transport Equations with Adsorption, Appl. Numer. Math., 171, 212-232, 2022.
  25. W.S. Don, R. Li, B.-S. Wang, Y. Wang, A novel and robust scale-invariant WENO scheme for hyperbolic conservation laws, J. Comput. Phys., 448, 110724, 2022.